Enterprise AI & Private LLM Infrastructure

Select the hardware tier that matches your parameter size and inference/training requirements.

Server Configurations

Dell PowerEdge C4130

Dell C4130 (SXM2)

$4,000+
Best For: Private LLMs (Llama-3 8B/70B), Research

The ideal entry point for high-performance private AI. Utilizes the SXM2 socket for high-bandwidth NVLink communication (300 GB/s). Perfect for quantized 70B models.

  • GPU Socket: NVIDIA SXM2
  • Configuration: 4x Tesla V100
  • Total VRAM: 64GB - 128GB
Configure C4130
NVIDIA DGX-1

NVIDIA DGX-1

$12,000+
Best For: Heavy Training, Multi-User Service

The gold standard for deep learning. Doubles the density of the C4130 using SXM2 architecture with a "Cube Mesh" NVLink topology for massive parallel throughput.

  • GPU Socket: NVIDIA SXM2
  • Configuration: 8x Tesla V100
  • Total VRAM: 128GB - 256GB
View DGX-1
NVIDIA DGX-2

NVIDIA DGX-2

$40,000+
Best For: "Unsharded" Huge Models, Science

A massive leap in AI architecture. Uses the SXM3 socket and NVSwitch to let 16 GPUs communicate simultaneously at 2.4 TB/s, creating a unified 512GB memory pool.

  • GPU Socket: NVIDIA SXM3
  • Configuration: 16x Tesla V100
  • Total VRAM: 512GB (Unified)
View DGX-2
HGX A100 Platform

HGX A100 Platform

$85,000+
Best For: Commercial Production, BF16 Training

Commercial-grade production capability using the SXM4 socket. Features Ampere architecture with TensorFloat-32 and BF16 support for unprecedented speed.

  • GPU Socket: NVIDIA SXM4
  • Configuration: 8x A100
  • Total VRAM: 320GB - 640GB
View HGX A100
Supermicro 4029GP-TRT2

Supermicro SYS-4029GP

From $7,000+
Best For: High-Density DIY Builds (Bring Your Own GPU)

The ultimate DIY host. This 4U chassis supports 8x Double-Width PCIe GPUs. Features Dual Xeon Scalable processors, up to 6TB RAM, and massive airflow for running RTX 3090/4090 or Tesla cards.

  • Form Factor: 4U Rackmount
  • Capacity: 8x PCIe 3.0 x16 GPUs
  • Processor: Dual Xeon Scalable
Configure Supermicro
Dell PowerEdge R740

Dell PowerEdge R740

$4,000+
Best For: Edge Inference, RAG Pipelines

Standard enterprise infrastructure for inference. Accepts standard PCIe accelerators (A10, T4, A2). A cost-effective solution for deploying tasks like RAG pipelines or chatbots.

  • Type: Standard PCIe 3.0
  • Capacity: Up to 3x Double-Width
  • Cooling: Standard Air
Configure R740

Setup & Demonstration Tutorials

vLLM Launch Command Reference

A Configuration for 4x 16GB V100 Cards
Reasoning Model (Qwen3-14B) Efficient 4-bit quantization using bitsandbytes. Ideal for general logic tasks.
vllm serve unsloth/Qwen3-14B-unsloth-bnb-4bit --port 8000 --served-model-name "qwen3-14b" --quantization bitsandbytes --gpu_memory_utilization 0.9 --pipeline_parallel_size 4
Coding Model (Qwen3-Coder-30B) GPTQ Int8 Quantization with Expert Parallelism enabled for MoE.
vllm serve QuantTrio/Qwen3-Coder-30B-A3B-Instruct-GPTQ-Int8 --port 8000 --served-model-name Qwen3-Coder-30B-A3B-Instruct-GPTQ-Int8 --enable-expert-parallel --gpu_memory_utilization 0.8 --tensor_parallel_size 4 --tokenizer "Qwen/Qwen3-Coder-30B-A3B-Instruct" --trust-remote-code --max-model-len 64000 --max-num-seqs 512 --swap-space 16
Visual LLM (Qwen3-VL-8B) Standard Instruct model for image analysis tasks.
vllm serve Qwen/Qwen3-VL-8B-Instruct --port 8000 --served-model-name Qwen3-VL-8B --gpu_memory_utilization 0.9 --tensor_parallel_size 4 --trust-remote-code --max-model-len 32000 --max-num-seqs 512
B Configuration for 4x 32GB V100 Cards
Huge Model (DeepSeek R1 Distill 70B) Running a massive 70B parameter model spread across 4x 32GB cards using 4-bit quantization.
vllm serve unsloth/DeepSeek-R1-Distill-Llama-70B-bnb-4bit --port 8000 --served-model-name DeepSeek-R1-Distill-Llama-70B-bnb-4bit --gpu_memory_utilization 0.9 --pipeline_parallel_size 4 --trust-remote-code --quantization bitsandbytes
Reasoning (Qwen3-30B-A3B) Larger context handling capabilities utilizing higher VRAM pool.
vllm serve Qwen/Qwen3-30B-A3B --port 8000 --served-model-name "qwen3-30b" --gpu_memory_utilization 0.9 --pipeline_parallel_size 4 --enable-expert-parallel
Coding (Qwen3-Coder-30B) Full performance configuration with larger context window and swap space.
vllm serve QuantTrio/Qwen3-Coder-30B-A3B-Instruct-GPTQ-Int8 --port 8000 --served-model-name Qwen3-Coder-30B-A3B-Instruct-GPTQ-Int8 --enable-expert-parallel --gpu_memory_utilization 0.8 --tensor_parallel_size 4 --tokenizer "Qwen/Qwen3-Coder-30B-A3B-Instruct" --trust-remote-code --max-num-seqs 512 --swap-space 16
Copyright © 2020 CanServers | All Prices are in CAD. All used custom and refurbished servers are shipped from Canada.